
1 Technical Details

1.1 Fitting volatility curve with SVI

1.1.1 General Problem

SVI parametric formulation (e.g. Zeliade, 2009) of the volatility Curve is

σ2
BS(k) = a+ b

(
ρ(k −m) +

√
(k −m)2 + σ2

)
where k = log(Strike/Forward) and (m,σ, ρ, a, b) – parameters. This functional form assumes
a ∈ R, b ≥ 0, |ρ| < 1,m ∈ R, σ > 0 and constraint

a+ bσ
√

1− ρ2 ≥ 0⇒ a ≥ −bσ
√

1− ρ2

that insures that this function lies above 0 everywhere. Absence of static arbitrage requires

b ≤ 4

(1 + |ρ|)T

Zeliade notes that for large maturities, almost affine smiles are not uncommon. This corresponds
to the case when σ → 0 or when σ →∞, a→ −∞. To rule out the first limiting case, Zeliade
(2009) restricts σ ≥ σmin > 0. To rule this the second, Zeliade (2009) assumes that a ≥ 0.
However, I found that it is hard to fit the smile when a ≥ 0, since implied variances for strikes
close to current price are too close to zero, so that we may want to set parameter a < 0 which
is in general doesn’t violate anything.

1.1.2 Zeliade (2009) method of reducing dimensionality

The approach of Zeliade (2009) then minimizes sum of squared residuals over parameters θ =
(m,σ, ρ, a, b)

min
θ

∑
i

[
a+ b

(
ρ(ki −m) +

√
(ki −m)2 + σ2

)
− σ2

i

]2

where ki – observed log(Strikei/Forwardi) and σi is the observed implied variance. If we follow
Zeliade (2009) assumption that a ≥ 0, then we can easily transform this problem into a linear
one for fixed (m,σ):

1. Divide the parameter θ into two parts θ1 = (m,σ) and θ2 = (ρ, a, b). Fix (m,σ) and
substitute yi = ki−m

σ
so that the minimization objective becomes

∑
i

[
a+ b

(
ρσyi + σ

√
y2
i + 1

)
− σ2

i

]2

2. Zeliade (2009) works with total variance Tv rather than on variance σ2. Denote total
variance ṽ = Tv, so that the SVI becomes

v(k) = aT + bT
(
ρ(k −m) +

√
(k −m)2 + σ2

)
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and the minimization objective becomes∑
i

[
aT + bρσTyi + bσT

√
y2
i + 1− ṽ2

i

]2

Replace variables ã := aT, d := bρσT, c := bσT . Now the problem is just a linear least
squares regression for the new variables∑

i

[
ã+ dyi + c

√
y2
i + 1− ṽ2

i

]2

3. Now we need to deal with constraints.

ρ ∈ [−1, 1]⇒ |d| ≤ c

b ≥ 0⇒ c ≥ 0

b ≤ 4

(1 + |ρ|)T
⇒ c ≤ 4σ

1 + |ρ|
⇒ c+ c|ρ| ≤ 4σ ⇒ c+ |d| ≤ 4σ ⇒ |d| ≤ 4σ − c

c ≤ 4σ

1 + |ρ|
⇒ c ≤ 4σ

0 ≤ a ≤ max
i
vi ⇒ 0 ≤ ã ≤ max

i
ṽi

Thus, we can described the parameter space as

D =


0 ≤ c ≤ 4σ

|d| ≤ c, |d| ≤ 4σ − c
0 ≤ ã ≤ max

i
ṽi

1.1.3 Simplification of Berger, Dew-Becker and Giglio

Berger, Dew-Becker and Giglio (?) assumes that ρ = 0. ρ controls the assymetry of asymptotes
of a hyperbola and thus asymmetry of the slopes of wings of the volatility smile. They say that
this including this ρ has a minimal effect on the fit. In this case the smile positivity condition
simplifies to a ≥ −bσ ⇒ ã ≥ −c. In this case, the optimization simplifies the following
procedure

1. For fixed (m,σ) the objective becomes

min
ã,d

∑
i

[
ã+ c

√
y2
i + 1− ṽ2

i

]2

subject to

D =

{
0 ≤ c ≤ 4σ

− c ≤ ã ≤ max
i
ṽi

D defines a parallelogram in the parameter space and minimization objective is a convex
function.
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2. Define

X =

1
√
y1 + 1

...
...

1
√
yn + 1

 , ṽ =

ṽ1
...
ṽn


• Estimate linear regression β := (ã c)′ = (X ′X)−1X ′ṽ. If β ∈ D then we found the

minimum. If β /∈ D proceed further

• Estimate regression along the side of domain D. Under a linear constraint on pa-
rameters Rβ = b, β = arg min(Xβ − ṽ)′(Xβ − ṽ) is given by

β = (X ′X)−1(X ′ṽ +R′λ) where λ =
[
R(X ′X)−1R′

]−1 [
b−R(X ′X)−1X ′ṽ

]
Linear constraints for sides of D are

(c = 0) : R = (0 1), b = 0

(c = 4σ) : R = (0 1), b = 4σ

(ã = −c) : R = (1 1), b = 0

(ã = max
i
ṽi) : R = (1 0), b = max

i
ṽi

For each of the constraints we need to check that the solution satisfies all other
inequalities. If it doesn’t, it can’t be a solution candidate

• Estimate objective in 4 vertices

ã = 0, c = 0

ã = −4σ, c = 4σ

ã = max
i
ṽi, c = 0

ã = max
i
ṽi, c = 4σ

• Pick the solution along the sides and vertices that has the lowest objective.

Relaxing the constraint from ã ≥ 0 to ã ≥ −c seems to improve the fit from visual inspection.
This is one of the methods that I use to fit the volatility smile. The main problem as it is

also outline in Berger, Dew-Becker and Giglio (?) is that the minimization is very sensitive to
starting values and hence they use grid search over m × σ = [−1, 1] × [0.00001, 10] to pick a
starting value and then they use local derivative free minimization algorithm. I do the same
in one of the approaches. In another approach, I use global optimization algorithm. These
algorithms require the set to be bounded and I use the same bounds as in the grid search. I
then compare both of these approaches by plotting fit of each.

1.1.4 Proceeding without assuming ρ = 0 or ã ≥ 0

Zeliade (2009) doesn’t assume ρ = 0 and they can still derive a simple objective. The reason
is that they assume ã ≥ 0 in which case the constraint becomes linear. If we don’t assume
this, we are left with constraint ã ≥ −cσ

√
1− ρ2 so that we can’t use the same bounded linear

regression approach. It seems that the only way to proceed is to perform factor out a and b out
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of optimization and perform the outer numerical optimization over (m,σ, ρ). The issue is that
we either need to add the third dimension to the grid search or perform global optimization
over 3 variables. Grid search over 3 variables is quite costly. Global optimization also adds
computational complexity but not to the same extent. Nevertheless, I use the two approaches
in order to compare the fit and see if it is worthwhile to fit volatility smile in this way.

For fixed (m,σ, ρ) the minimization objective becomes

min
a,b

∑
i

[
a+ b

(
ρσyi + σ

√
y2
i + 1

)
− σ2

i

]2

subject to

(a, b) ∈ D =


−bσ

√
1− ρ2 ≤a ≤ max

i
{σi}

0 ≤b ≤ 4

(1 + |ρ|)T
that is very similar to the problem considered before.

1.2 Generating Option Prices

1.2.1 IvyDB approach to implied volatility

In order to calculate option price for given strike and a given volatility we need to know the
Zero Coupon Rate for the maturity of the option and the type of dividends. The approach for
calculating option prices for indices and individual equities differs (I took details from IvyDB
reference on WRDS (link)):

1. For indices IvyDB assumes that dividends are continuously compounded. They use
a structural regression that utilizes put-call parity to get dividends yield. Table OP-
TIONM.IDXDVD provides such estimate for the dividend yield.

2. For equities IvyDB uses either actual ex-dividend date if dividends were announced or
it uses projected date using the frequency of dividends. Information about historical
dividends and other distributions is provided in table OPTIONM.DISTRD

Zero Coupon Rates for standard maturities is provided in Table OPTIONM.ZEROCD where
IvyDB provides annualized continuously compounded interest rate. To get the interest rate for
the maturity of the option IvyDB linearly interpolates interest rates for neighboring maturities.

1.2.2 Continuously Compounded vs. Discrete Dividends

Value of an option with continuously compounded dividends at rate q is

Call Price = e−qTN (d1)− e−rTKN (d2)

Put Price = e−rTKN (−d2)− e−qTN (−d1)

where d1 =
log(S0/K) + (r − q + 1

2
σ2)T

σ
√
T

, d2 = d1 − σ
√
T
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Note that in the case of continuously compounded dividends forward price at time 0 with
maturity at time T of an asset is given by

F0(T ) =
e−qTS0

P0(T )
=
e−qTS0

e−rT

where P0(T ) is the price of a ZCB.
In the case of discrete dividends between current time 0 and the maturity of the option T

at points of time τ1, . . . , τN of size D1, . . . , DN

F0(T ) =
S0 −

∑
i P0(τi)Di

P0(T )

To value an option for such asset we can use the formula from above replacing q with 0 and
S0 with F0(T )P0(T ) (see for example, Back (2017)). For the case of continuously compounded
dividends F0(T )P0(T ) = e−qTS0. Therefore, both continuously compounded and discrete divi-
dends are cases of a more general formula. Option prices are given by standard Black-Scholes
Formula with no dividends

Call Price = N (d1)− e−rTKN (d2)

Put Price = e−rTKN (−d2)−N (−d1)

where d1 =
log(S0/K) + (r + 1

2
σ2)T

σ
√
T

, d2 = d1 − σ
√
T

where we replace S0 with F0(T )P0(T ) and F0(T ) is calculated as

1. in the case of continuously compounded dividednds as
e−qTS0

P0(T )

2. in the case of discrete dividends as
S0 −

∑
i P0(τi)Di

P0(T )

To get price of ZCB I use a table with ZCB rates from IvyDB and linearly interpolate them,
if dividend is paid before the minimal maturity in the ZCB table I set the rate equal to the one
for minimal maturity.
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1.3 Calculating Du and Kapadia Measure of Jump Risk

1.3.1 Comment about µ0,T term

Derivation of D(T ) term require calculating

µ0,T = E∗0

[
log

ST
S0

]
In the paper they do the following. First, denote RT = log(ST/S0). Second, using the martin-
gale property under the risk neutral measure they write

erT = E∗0

[
ST
S0

]
= E∗0

[
eRT
]

Second, expand function eR around R = 0 to get

erT = E∗0

[
1 +RT +

1

2
R2
T +

1

6
R3
T +

1

24
R4
T

]

erT = 1 + E∗0RT +
1

2
E∗0R

2
T +

1

6
E∗0R

3
T +

1

24
E∗0R

4
T

E∗0

[
log

ST
S0

]
≡ E∗0RT = erT − 1− 1

2
E∗0R

2
T −

1

6
E∗0R

3
T −

1

24
E∗0R

4
T

Third, they use option spanning theorem that any contract with twice continuously differen-
tiable payoff function H(S) has price

e−rTE∗0 [H(S)] = e−rT (H(S̄)−S̄H ′(S̄))+H ′(S̄)S0+

∫ ∞
S̄

H ′′(K)C(0, T,K)dK+

∫ S̄

0

H ′′(K)P (0, T,K)dK

to price each of the terms E∗0R
2
T , E∗0R

3
T and E∗0R

4
T .

If we let

H(ST ) = log
ST
S0

= log(ST )− log(S0)

we can write

e−rTE∗0 [log(ST )] = e−rT (log(S̄)− S̄ 1

S̄
) +

1

S̄
S0 −

∫ ∞
S̄

1

K2
C(0, T,K)dK −

∫ S̄

0

1

K2
P (0, T,K)dK
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1.4 Regression with linear constraints on parameters

The problem is

min
β

1

2
(Xβ − ṽ)′(Xβ − ṽ) subject to Rβ = b

Set up lagrangian

L =
1

2
(Xβ − ṽ)′(Xβ − ṽ)− λ′(Rβ − b)

First order condition

∂L
∂β

= (Xβ − ṽ)′X − λ′R = 0⇒ β′X ′X − ṽ′X − λ′R = 0⇒ β = (X ′X)−1(X ′ṽ +R′λ)

Plug this into constraint to get

R(X ′X)−1(X ′ṽ +R′λ) = b⇒ R(X ′X)−1X ′ṽ +R(X ′X)−1R′λ = b⇒

λ =
[
R(X ′X)−1R′

]−1 [
b−R(X ′X)−1X ′ṽ

]
If we plug λ back into the expression for β we can get the final answer.
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